The Efficient Synthesis and Biological Evaluation of Novel Bi-Functionalized Sarcophagine for 64Cu Radiopharmaceuticals

نویسندگان

  • Shuanglong Liu
  • Dan Li
  • Chiun-Wei Huang
  • Li-Peng Yap
  • Ryan Park
  • Hong Shan
  • Zibo Li
  • Peter S. Conti
چکیده

Purpose We and others have reported that Sarcophagine-based bifunctional chelators could be effectively used in the syntheses of (64)Cu radiopharmaceuticals. The resulted (64)Cu-Sarcophagine complexes demonstrated great in vivo stability. The goal of this study was to further derivatize Sarcophagine cage with amino and maleimide functional groups for conjugation with bioligands.Methods Starting from DiAmSar, three novel chelators (AnAnSar, BaMalSar, and Mal(2)Sar) with two functional groups have been synthesized. Among those, BaMalSar and Mal(2)Sar have been conjugated with cyclic peptide c(RGDyC) (denoted as RGD) and the resulted conjugates, BaMalSar-RGD and Mal(2)Sar-RGD(2) have been labeled with (64)Cu. The tumor targeting efficacy of (64)Cu-labeled RGD peptides were evaluated in a subcutaneous U87MG glioblastoma xenograft model.Results The conjugates, BaMalSar-RGD and Mal(2)Sar-RGD(2) could be labeled with (64)CuCl(2) in 10 min with high purity (>98%) and high radiochemical yield (>90%). Both (64)Cu-BaMalSar-RGD and (64)Cu-Mal(2)Sar-RGD(2) exhibited high tumor uptake and tumor-to-normal tissue ratios.Conclusion Three novel chelators with two functional groups have been developed based on Sarcophagine cage. The platform developed in this study could have broad applications in the design and synthesis of( 64)Cu-radiopharmaceuticals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of multi-functional chelators based on sarcophagine cages.

A new class of multifunctionalized sarcophagine derivatives was synthesized for 64Cu chelation. The platform developed in this study could have broad applications in 64Cu-radiopharmaceuticals.

متن کامل

Nano-BF3/cellulose as a biodegradable novel catalyst for synthesis of highly functionalized tetrahydropyridines

Nano-cellulose with high amount of free OH groups could be used as supporting agents for boron trifluoride (BF3). Nano-BF3/cellulose is a solid acid and a biodegradable catalyst which was prepared via reaction of nano-cellulose and BF3. The structure of this catalyst was studied by FT-IR, FESEM, TEM, XRD, EDS, TGA, XRF and BET. In this research, the synthesis of...

متن کامل

Nanocrystalline SiO2–HClO4: A novel, efficient and green catalyst for the three-component synthesis of pyrimidine derivatives

Nanocrystalline SiO2–HClO4, as a newly reported catalyst, has been used as an efficient and reusable catalyst for the synthesis of pyrimidine derivatives. The procedure can be successfully applied to the efficient synthesis of mono substituted pyrimidine derivatives, using triethyl orthoformate, ammonium acetate, methyl ketone derivatives. In practice, this method is a combination of a satisfac...

متن کامل

Fe3O4@SiO2@Propyl-ANDSA: A New Catalyst for the Synthesis of Substituted Pyrroles

Substituted pyrroles are an essential class of heterocyclic compounds. In this research, an efficient and eco-friendly method has been developed for the synthesis of pyrrole derivatives from the reaction of 2,5-hexanedione and primary amines. Magnetic nanoparticles supported on functionalized. 7-aminonaphthalene-1,3-disulfonic acid-functionalized. silica (Fe3O4@SiO2@Propyl–ANDSA) has been inves...

متن کامل

Efficient synthesis of xanthene derivatives in aqueous media in the presence of Cu-anchored furfural imine-functionalized halloysite

A novel hybrid catalyst based on grafting Cu on furfural imine-functionalized halloysite was designed, characterized and used for promoting synthesis of xanthene derivatives via three- component reaction of benzaldehyde derivatives, dimedone, and β-naphthol in aqueous media and under mild reaction condition. The results established high catalytic activity of the hybrid system, which was superio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012